bin-parser Documentation
Release stable

Jun 21, 2018

Contents:

1.1 Why thislibrary?
1.2 Background.
13 Approach
1.4 Limitations

Introduction
Installation

21 Python
22 JavaScript.
23 Fromsource

Command line usage

31 Python
32 JavaScript.

41 TYPeS « v v e e e e e
42 Constants e
43 Defaults.
44 MaCros i e e e e e e e e e

5.1 Flatstructure

Types
Structure
5.2 Loops and conditionals

53 forloops
54 whileloops i
5.5 Conditionals
5.6 Complex conditionals
5.7 Notes on evaluation

Library

6.1 Basicusage
6.2 Defining new types

Extras

7.1 Debugging
7.2 make_ skeleton

W AW W w

N 09

......................... 13

7.3 compare_yaml

74 sync_test ...

8 Contributors

bin-parser Documentation, Release stable

This library provides general binary file parsing by interpreting documentation of a file structure and data types.
By default, it supports basic data types like big-endian and little-endian integers, floats and doubles, variable length
(delimited) strings, maps and bit fields (flags) and it can iterate over sub structures. Other data types are easily added.

The file structure and the types are stored in nested dictionaries. The structure is separated from the types, this way
multiple file formats using the same types (within one project for example) can be easily supported without much
duplication.

The design of the library is such that all operations can be reversed. This means that fully functional binary editing is
possible using this implementation; first use the reader to convert a binary file to a serialised dictionary representation,
this representation is easily edited using a text editor, and then use the writer to convert back to binary.

This idea is implemented in two languages; Python and JavaScript. All main development is done in Python. We
chose YAML as our preferred serialised dictionary format, but other serialisation formats (JSON for example) can be
used too.

Please see ReadTheDocs for the latest documentation.

Contents: 1

https://github.com/jfjlaros/bin-parser/graphs/commit-activity
https://travis-ci.org/jfjlaros/bin-parser
https://github.com/jfjlaros/bin-parser/releases
https://github.com/jfjlaros/bin-parser/releases
https://pypi.org/project/bin-parser/
https://www.npmjs.com/package/bin-parser
https://github.com/jfjlaros/bin-parser
https://github.com/jfjlaros/bin-parser
https://github.com/jfjlaros/bin-parser
https://raw.githubusercontent.com/jfjlaros/bin-parser/master/LICENSE.md
https://bin-parser.readthedocs.io/en/latest/index.html

bin-parser Documentation, Release stable

2 Contents:

CHAPTER 1

Introduction

1.1 Why this library?

Writing a parser for binary files requires reverse engineering skills, knowledge of encodings, and above all, patience
and intuition. Once all knowledge is gathered, the person doing the reverse engineering usually writes a parser and,
if we are lucky, leaves some documentation. We try to facilitate this process by providing the tools to do this in a
uniform way. In essence, we document the knowledge we gain from the reverse engineering process and use this
documentation directly in a parser.

Since the bulk of the types stored in binary files are standard, dedicated parsers contain a lot of boiler plate code. We
try to minimise this by providing a framework where all knowledge is recorded in a human readable format (YAML
files) while the obligatory boiler plate code is incorporated in the library.

1.2 Background

In the following example, we read two bytes from an input stream, convert the read data to an integer and store it in
an output dictionary under the keys weight and age.

output ['weight'] = s_char_to_int (input_handle.read (1))
output ['age'] = s_char_to_int (input_handle.read (1))

This approach results in file specific literals (like weight and 1) and data type conversions (s_char_to_int ())
directly in source code. This has several disadvantages:

* It is difficult to see what the file format is. This can be deduced only from the source code of the developed
parser.

* A separate piece of software needs to be implemented if the conversion needs to be reversed.
» The parser is not portable to other programming languages.
Within the framework of this library, we attempt to solve the aforementioned problems.

By first defining the types, we can reuse them easily:

bin-parser Documentation, Release stable

s_char:
function:
name: struct

Now we can use the type s_char in our structure definition:

- name: weight
type: s_char

- name: age
type: s_char

By recording the file structure this way, the knowledge of the file format and the implementation of the parser are
strictly separated. This has the following advantages:

* The file format is documented in a human readable way.
* Reading and writing of the file format is supported.

* The parser is portable.

1.3 Approach

In order to parse a binary file, the library needs two pieces of information: it needs to know what the structure of the
binary file is and it needs to know which types are used. Both of these information sources are provided to the library
as nested dictionaries.

1.3.1 Example: Personal information

Suppose we have a file (person.dat) that contains the following:
* An age (one byte integer).
* A name (zero delimited string).
* A weight (an other one byte integer).

To make a parser for this type of file, we need to create a file that contains the type definitions. We name this file
types.yml.

types:
s_char:
function:
name: struct
text:
delimiter:
- 0x00

Then we create a file that contains the definition of the structure. This file we name structure.yml.

- name: age
type: s_char
— name: name

(continues on next page)

4 Chapter 1. Introduction

bin-parser Documentation, Release stable

(continued from previous page)

type: text
— name: weight
type: s_char

‘We can now call the command line interface as follows:

bin_parser read person.dat structure.yml types.yml person.yml

This will result in a new file, named person. yml, which contains the content of the input file (person.dat)ina
human (and machine) readable format:

age: 36
name: John Doe
weight: 81

1.4 Limitations

The main assumption made is that the binary files are linearly parsable. File seeking or multiple passes over an input
file are not supported. Also, there is no support for the chaining of data types, so currently, compressed and encrypted
files are not supported.

1.4. Limitations 5

bin-parser Documentation, Release stable

6 Chapter 1. Introduction

CHAPTER 2

Installation

The software is distributed via PyPI and npm for the Python and JavaScript implementations respectively.

2.1 Python

The Python version of the package is installed with pip:

’pip install bin-parser

2.2 JavaScript

The JavaScript version of the package is installed with npm:

’npm install bin-parser

2.3 From source

The source is hosted on GitHub, to install the latest development version, use the following commands.

git clone https://github.com/jfjlaros/bin-parser.git
cd bin-parser
pip install .

For the JavaScript implementation, replace the last command with:

npm install .

https://pypi.org/project/bin-parser
https://www.npmjs.com/package/bin-parser
https://github.com/jfjlaros/bin-parser.git

bin-parser Documentation, Release stable

8 Chapter 2. Installation

CHAPTER 3

Command line usage

A command line interface is available for both implementations. Apart from some implementation details concerning
standard streams, their behaviour is identical.

3.1 Python

To convert a binary file to YAML, use the read subcommand:

’bin_parser read input.bin structure.yml types.yml output.yml

To convert a YAML file to binary, use the write subcommand:

’bin_parser write input.yml structure.yml types.yml output.bin

3.2 JavaScript

To convert a binary file to YAML, use the read subcommand:

./node_modules/.bin/bin_parser read input.bin structure.yml types.yml \
output.yml

To convert a YAML file to binary, use the write subcommand:

./node_modules/.bin/bin_parser write input.yml structure.yml types.yml \
output .bin

Please note that when installing from source, the bin_parser executable is not installed. Instead run the script
cli. js as follows:

nodejs Jjavascript/cli. s

bin-parser Documentation, Release stable

10 Chapter 3. Command line usage

CHAPTER 4

Types

Types, constants, defaults and macros are defined in a nested dictionary which is usually serialised to YAML. This file,
usually named types . yml, consists of three (optional) sections; types, constants, defaults and macros.

In general the types file will look something like this:

constants:
multiplier: 10
defaults:
size: 2
types:
s_char:
size: 1
function:
name: struct
text:
delimiter:
- 0x00

4.1 Types

A type consists of two subunits controlling two stages; the acquirement stage and the processing stage.

The acquirement stage is controlled by the size and delimiter parameters, the size is given in number of bytes,
the delimiter is a list of bytes. Usually specifying one of these parameters is sufficient for the acquisition of the data,
but in some cases, where for example we have to read a fixed sized block in which a string of variable size is stored,
both parameters can be used simultaneously. Once the data is acquired, it is passed to the processing stage.

The processing stage is controlled by the function parameter, it denotes the function that is responsible for pro-
cessing the acquired data. Additional parameters for this function can be supplied by the args parameter.

11

bin-parser Documentation, Release stable

4.1.1 Basic types

In version 0.0.14 the st ruct type was introduced to replace basic types like int, f1loat, etc. and simple compound
data types. The formatting parameter fmt is used to control how a value is packed or unpacked. For example, a 4-byte
little-endian integer uses the formatting string ' <i' and a big-endian unsigned long uses the formatting string ' >L"'.
To avoid any issues with serialisation to YAML (the > sign may cause problems), it is recommended to quote the
string.

For a complete overview of the supported basic types, see the Python struct documentation or our extensive list of
examples.

4.1.2 Examples

The following type is stored in two bytes and is processed by the text function:

id:
size: 2
function:
name: text

This type is stored in a variable size array delimited by 0x00 and is processed by the text function:

comment :
delimiter:
- 0x00
function:
name: text

We can pass additional parameters to the t ext function, in this case split on the character 0x0 9, like so:

comment :
delimiter:
- 0x00
function:
name: text
args:
split:
- 0x09

A 2-byte little-endian integer is defined as follows:

int:
size: 2
function:
name: struct
args:
fmt: '<h'

And a 4-byte big-endian float is defined as follows:

float:
size: 4
function:
name: struct
args:
fmt: '>f°

12 Chapter 4. Types

https://docs.python.org/2/library/struct.html#format-characters
https://github.com/jfjlaros/bin-parser/blob/master/examples/types/types.yml

bin-parser Documentation, Release stable

4.1.3 Compound types

Simple compound types can also be created using the st ruct function. By default this will return a list of basic
types, which can optionally be mapped using an annotation list. Additionally, a simple dictionary can be created by
labeling the basic types.

In the following example, we read three unsigned bytes, by providing a list of labels, the first byte is labelled r, the
second one g, and the last one b. If the values are 0, 255 and 128 respectively, the resulting dictionary will be: { 'r"':
0, 'g': 255, 'b': 128}.

colour:
size: 3
function:
name: struct
args:
fmt: 'BBB'

labels: [r, g, Dbl

Values can also be mapped using an annotation list to improve readability. This procedure replaces specific values
by their annotation and leaves other values unaltered. Note that mapping multiple values to the same annotation will
break reversibility of the parser.

In the following example, we read one 4-byte little-endian unsigned integer and provide annotation for the maximum
and minimum value. If the value is 0, the result will be unknown, if the value is 10, the result will be 10 as well.

date:
size: 4
function:
name: struct
args:
fmt: '<I'
annotation:
Oxffffffff: defined
0x00000000: unknown

Labels and annotation lists can be combined.

4.2 Constants

A constant can be used as an alias in structure.yml. Using constants can make conditional statements and loops
more readable.

4.3 Defaults

To save some space and time writing types definitions, the following default values are used:
* size defaultsto 1.
e function defaults to the name of the type.
* If no name is given, the type defaults to raw and the destination is a list named __raw___

So, for example, since a byte is of size 1, we can omit the size parameter in the type definition:

4.2. Constants 13

bin-parser Documentation, Release stable

byte:
function:
name: struct

In the next example the function text will be used.

text:
size: 2

And if we need an integer of size one which we want to name st ruct, we do not need to define anything.

If the following construction is used in the structure, the type will default to raw:

- name:
size: 20

4.3.1 Overrides

The following defaults can be overridden by adding an entry in the defaults section:
e delimiter (defaultsto []).
¢ name (defaultsto ' ").
¢ size (defaults to 1).
¢ type (defaults to text).
e unknown_destination (defaultsto___raw_).

e unknown_type (defaults to raw).

4.4 Macros

Macros were introduced in version 0.0.15 to define complex compound types. A macro is equivalent to a sub structure,
which are also used in the structure definition either as is, or as the body of a loop or conditional statement.

In the following example, we have a substructure that occurs more than once in our binary file. We have two persons,
of which the name, age, weight and height are stored. Using a flat file structure will result in something similar to this:

— name: name_1l

— name: age_l1
type: u_char

- name: weight_1
type: u_char

- name: height_1
type: u_char

— name: name_2

- name: age_2
type: u_char

- name: weight_2
type: u_char

— name: height_2
type: u_char

14 Chapter 4. Types

bin-parser Documentation, Release stable

Note that we have to choose new variable names for every instance of a person. This makes downstream processing
quite tedious. Furthermore, code duplication makes maintenance tedious.

The st ructure directive can be used to group variables in a substructure. This solves the variable naming issue, but
it does not solve the maintenance issue.

— name: person_1l
structure:
— name: name
- name: age
type: u_char
- name: weight
type: u_char
- name: height
type: u_char
— name: person_2
structure:
— name: name
— name: age
type: u_char
- name: weight
type: u_char
- name: height
type: u_char

We can define a macro in the types. yml file by adding a section named macros where we describe the structure
of the group of variables.

types:
u_char:
function:
name: struct
args:
fmt: "B’
text:
delimiter:
- 0x00
macros:
person:
— name: name
- name: age
type: u_char
— name: weight
type: u_char
— name: height
type: u_char

This macro can then be used in the st ructure. yml file in almost the same we we use a basic type.

— name: person_l
macro: person
— name: person_2
macro: person

A common substructure in binary formats is a data field preceded by its length, e.g., a string preceded by its length as
a little endian 32-bit unsigned integer: \x0b\x00\x00\x00hello world. In the size_string example we show

4.4. Macros 15

https://github.com/jfjlaros/bin-parser/tree/master/examples/size_string

bin-parser Documentation, Release stable

how we can use a macro to facilitate this.

Macros can also be used to define variable types, i.e., a type that depends on the value of a previously defined variable.
In the var_type example, we show how this can be accomplished.

16 Chapter 4. Types

https://github.com/jfjlaros/bin-parser/tree/master/examples/var_type

CHAPTER B

Structure

After having defined the basic types, the structure of the binary file can be recorded in a separate nested dictionary
which is usually serialised to YAML. This file, usually named st ructure . yml contains the general structure of the

binary file.

5.1 Flat structure

A simple flat structure is recorded as a list in which, for every variable, we supply a name and a type. In the following
example we see the definition of a simple flat structure containing two short integers and one text field.

- name:
type:
- name:
type:
— name:
type:

year_of_birth
short

name

text

balance

short

5.2 Loops and conditionals

Both loops and conditionals (except the for loop) are controlled by an evaluation of a logic statement. The statement
is formulated by specifying one or two operands and one operator. The operands are either constants, variables or
literals. The operator is one of the following:

17

bin-parser Documentation, Release stable

operator binary | explanation

not no Not.

and yes And.

or yes Or.

XOr yes Exclusive or.

eq yes Equal.

ne yes Not equal.

ge yes Greater then or equal.
gt yes Greater then.

le yes Less then or equal.
1t yes Less then.

mod yes Modulo.
contains | yes Is a sub string of.

A simple test for truth or non-zero can be done by supplying one operand and no operator.

5.3 for loops

A simple for loop can be made as follows.

— name: fixed_size_ list
for: 2
structure:
- name: item
- name: value
type: s_char

The size can also be given by a variable.

— name: size_of_list
type: s_char
— name: variable_size_list
for: size_of_ list
structure:
- name: item
— name: value
type: s_char

5.4 while loops

The do-while loop reads the structure as long as the specified condition is met. Evaluation is done at the end of
each cycle, the resulting list is therefore at least of size 1.

— name: variable_size_list
do_while:
operands:
- value
- 2
operator: ne
structure:

(continues on next page)

18 Chapter 5. Structure

bin-parser Documentation, Release stable

(continued from previous page)

- name: item
— name: value
type: s_char

The while loop first reads the first element of the structure and if the specified condition is met, the rest of the
structure is read. Evaluation is done at the start of the cycle, the resulting list can therefore be of size 0. The element
used in the last evaluation (the one that terminates the loop), does not have an associated structure, so its value is stored
in the variable specified by the t erm keyword.

— name: variable_size_list
while:
operands:
- value
- 2
operator: ne
term: list_term
structure:
- name: value
type: s_char
- name: item

When using this structure on the input \x01hello\x00\x03world\x00\x02, the result will be as follows.

list_term: 2
variable_size_list:
— item: hello

value: 1
- item: world
value: 3

5.5 Conditionals

A variable or structure can be read conditionally using the if statement.

— name: something
type: s_char
- name: item
if:
operands:
- something
- 2
operator: eq

5.6 Complex conditionals

More complex conditional statements can be built by using nesting. The following example evaluates the expression
(1 == 2) or True

— name: item
if:
operands:

(continues on next page)

5.5. Conditionals 19

bin-parser Documentation, Release stable

(continued from previous page)

— operands:
-1
- 2
operator: eq
- true
operator: or

Also see complex_eval for a working example.

5.7 Notes on evaluation

Since we use a general way of evaluating expressions, there are usually multiple ways of writing such an expression.
For example, the following statements are equal:

Implicit truth test.

- name: item
if:
operands:
- something

Explicit truth test.

- name: item
if:
operands:
- something
- true
operator: eq

Explicit non-false test.

- name: item
if:
operands:
- something
- false
operator: ne

20 Chapter 5. Structure

https://github.com/jfjlaros/bin-parser/blob/master/examples/complex_eval

CHAPTER O

Library

While the command line interface can be used to parse a binary file when the correct types and structure files are
provided, it may be useful to have a dedicated interface for specific file types. It could also be that the current library
does not provide all functions required for a specific file type. In these cases, direct interfacing to the library is needed.

6.1 Basic usage

For both implementations we provide a BinReader and a BinWriter object that are initialised with the input file

and the types and structure definitions.

6.1.1 Python

To use the library from our own code, we need to use the following:

#!/usr/bin/env python
import yaml

from bin_parser import BinReader

parser = BinReader (
open('balance.dat', 'rb').read(),
yaml.safe_load (open('structure.yml')),
yvaml.safe_load(open('types.yml'")))

print (' {/\n'.format (parser.parsed['name']))
print (' \n'.format (parser.parsed['year_of_birth']))
print (' \n'.format (parser.parsed['balance']))

The BinReader object stores the original data in the data member variable and the parsed data in the parsed

member variable.

21

bin-parser Documentation, Release stable

6.1.2 JavaScript

Similarly, in JavaScript, we use the following:

#!/usr/bin/env node
'use strict';

var fs = require('fs'),
yaml = require('js-yaml');

var BinParser = require('../../javascript/index'");

var parser = new BinParser.BinReader (
fs.readFileSync('balance.dat'),
yaml.load(fs.readFileSync ('structure.yml')),
yaml.load(fs.readFileSync('types.yml')),
{hH

console.log(parser.parsed.name) ;
console.log(parser.parsed.year_of_birth);
console.log(parser.parsed.balance);

6.2 Defining new types
See prince for a working example of a reader and a writer in both Python and JavaScript.

6.2.1 Python

Types can be added by subclassing the BinReadFunctions class. Suppose we need a function that inverts all bits
in a byte. We first have to make a subclass that implements this function:

from bin_parser import BinReadFunctions

class Invert (BinReadFunctions) :
def inv(self, data):
return data © Oxff

By default, the new type will read one byte and process it with the inv function. In this case there is no need to define
the type in types.yml.

Now we can initialise the parser using an instance of the new class:

parser = bin_parser.BinReader (
open ('something.dat', 'rb').read(),
yaml.safe_load (open('structure.yml')),
yvaml.safe_load(open('types.yml'")),
functions=Invert ())

6.2.2 JavaScript

Similarly, in JavaScript, we make a prototype of the BinReadFunctions function.

22 Chapter 6. Library

https://github.com/jfjlaros/bin-parser/blob/master/examples/prince

bin-parser Documentation, Release stable

var Functions = require('../../../Jjavascript/functions');

function Invert () {
this.inv = function (data) {
return data © Oxff;

}i

Functions.BinReadFunctions.call (this);

Now we can initialise the parser with the prototyped function:

var parser = new BinParser.BinReader (
fs.readFileSync('something.dat"),
yaml.load(fs.readFileSync('structure.yml")),
yaml.load(fs.readFileSync ('types.yml")),
{'"functions': new Invert()});

6.2. Defining new types

23

bin-parser Documentation, Release stable

24 Chapter 6. Library

CHAPTER /

Extras

In this section we discuss a number of additional features and programs included in this project.

7.1 Debugging

The parser and the writer support four debug levels, controlled via the —d option of the command line interface.

level | description

0 No debugging.

1 Show general debugging information and internal variables.
2 Show general debugging information and parsing details.

3 Show all debugging information.

7.1.1 General debugging information

The section DEBUG INFO contains some general debugging information.
For the parser it contains:

* The file position after the parsing has finished and the size of the file. Something is wrong if these two values
are not equal.

* The number of bytes that have been parsed and assigned to variables. This is all the data that has not been
assigned to the ___raw___list.

For the writer this section only contains the number of bytes written.
7.1.2 Internal variables

The section INTERNAL VARIABLES contains the internal key-value store used for referencing previously read vari-
ables.

25

bin-parser Documentation, Release stable

7.1.3 Parsing details

The section named PARSING DETAILS contains a detailed trace of the parsing or writing process. Every line
represents either a conversion or information about substructures.

For the parser, a conversion line contains the following fields:

field description

l: File position.

2 Field content.

(3) Field size (not used for strings).
——>4 | Variable name.

In the following example, we see how the file from our balance example is parsed.

0x000000: cf 07 (2) —-—> year_of_birth
0x000002: John Doe ——-> name
0x00000b: 8a 0Oc (2) ——> balance

For the writer, a conversion line contains the following fields:

field description

1: File position.
2 Variable name.
——>3 | Field content.

In the following example, we see how the file from our balance example is written.

0x000000: year_of_birth ——> 1999
0x000002: name —-—-> John Doe
0x00000b: balance ——> 3210

The start of a substructure is indicated by —— followed by the name of the substructure, the end of a substructure is
indicated by ——> followed by the name of the substructure.

7.2 make skeleton

To facilitate the development of support for a new file type, the make_skeleton command can be used to generate
a definition stub. It takes an example file and a delimiter as input and outputs a structure and types files definition. The
input file is scanned for occurrences of the delimiter and creates a field of type raw for the preceding bytes. All fields
are treated as delimited variable length strings that are processed by the raw function, as a result, all fixed sized fields
are appended to the start of these strings.

7.2.1 Example

Suppose we know that the string delimiter in our balance example is 0x00. We can create a stub for the structure and
types definitions as follows:

make_skeleton -d 0x00 balance.dat structure.yml types.yml

The —d parameter can be used multiple times for multi-byte delimiters.

This will generate the following types definition:

26 Chapter 7. Extras

https://github.com/jfjlaros/bin-parser/blob/master/examples/balance
https://github.com/jfjlaros/bin-parser/blob/master/examples/balance
https://github.com/jfjlaros/bin-parser/blob/master/examples/balance

bin-parser Documentation, Release stable

types:
raw:
delimiter:
- 0x00
function:
name: raw
text:
delimiter:
- 0x00

with the following structure definition:

— name: field_ 000000

type: raw
— name: field_ 000001
type: raw

The performance of these generated definitions can be assessed by using the parser in debug mode:

bin_parser read -d 2 \
balance.dat structure.yml types.yml balance.yml 2>&l1 | less

which gives the following output:

0x000000: <CF>"GJohn Doe —--> field_ 000000
0x00000b: <8A>"L —-—-> field_000001

We see that the first field has two extra bytes preceding the text field. This is an indication that one or more fields
need to be added to the start of the structure definition. If we also know that in this file format only strings and 16-bit
integers are used, we can change the definitions as follows.

We remove the raw type and add a type for parsing 16-bit integers:

types:
short:
size: 2
function:
name: struct
args:
fmt: '<h'
text:
delimiter:
- 0x00

and we change the structure to enable parsing of the newly found integers:

— name: number_1
type: short

- name: name
type: text

— name: number_2
type: short

By iterating this process, reverse engineering of these types of file formats is greatly simplified.

7.2. make_skeleton 27

bin-parser Documentation, Release stable

7.3 compare_yaml

Since YAML files are serialised dictionaries or JavaScript objects, the order of the keys is not fixed. Also, differences
in indentation, line wrapping and other formatting differences can lead to false positive detection of differences when
using rudimentary tools like diff.

compare_yaml takes two YAML files as input and outputs differences in the content of these files:

compare_yaml input_1.yaml input_2.yaml

The program recursively compares the contents of dictionaries (keys), lists and values. The following differences are
reported:

* Missing keys at any level.
* Lists of unequal size.
* Differences in values.

When a difference is detected, no further recursive comparison attempted, so the list reported differences is not guar-
anteed to be complete. Conversely, if no differences are reported, then the YAML files are guaranteed to have the same
content.

7.4 sync_test

To keep the Python- and JavaScript implementations in sync, we use a shell script that compares the output of both the
parser and the writer for various examples.

’./extras/sync_test

This will perform a parser test and an invariance test for all examples.

7.4.1 Parser test

This test uses the Python- and JavaScript implementation to convert from binary to YAML. compare_yaml is used
to check for any differences.

7.4.2 Invariance test

This test performs the following steps:
1. Use the Python implementation to convert from binary to YAML.
2. Use the Python implementation to convert the output of step 1 back to binary.
3. Use the JavaScript implementation to convert the output of step 1 back to binary.
4. Use the Python implementation to convert the output of step 2 to YAML.

The output of step 1 and 4 is compared using compare_yaml to assure that the generated YAML is invariant under
conversion to binary and back in the Python implementation. The two generated binary files in step 2 and 3 are
compared with di f £ to confirm that the Python- and JavaScript implementations behave identically.

Note that the original binary may not be invariant under conversion to YAML and back. This is the case when variable
length strings within fixed sized fields are used.

28 Chapter 7. Extras

CHAPTER 8

Contributors

* Jeroen EJ. Laros <J.F.J.Laros @lumc.nl> (Original author, maintainer)
* Daniel S. Katz <d.katz@ieee.org>

* Jamie Ross <jamie.ross @electricityexchange.ie>

* Matthew Fernandez <matthew.fernandez @ gmail.com>

* Robert Haines <rhaines @manchester.ac.uk>

Find out who contributed:

git shortlog -s -e

29

mailto:J.F.J.Laros@lumc.nl
mailto:d.katz@ieee.org
mailto:jamie.ross@electricityexchange.ie
mailto:matthew.fernandez@gmail.com
mailto:rhaines@manchester.ac.uk

	Introduction
	Why this library?
	Background
	Approach
	Limitations

	Installation
	Python
	JavaScript
	From source

	Command line usage
	Python
	JavaScript

	Types
	Types
	Constants
	Defaults
	Macros

	Structure
	Flat structure
	Loops and conditionals
	for loops
	while loops
	Conditionals
	Complex conditionals
	Notes on evaluation

	Library
	Basic usage
	Defining new types

	Extras
	Debugging
	make_skeleton
	compare_yaml
	sync_test

	Contributors

